멀티채널 측정시스템 사용자 설명서

Hyperspectral Multichannel System 30채널 / 2세트

키스랩

www.kislab.kr

Tel: 070-7562-4964

Mob: 010-3249-6129

목 차

1. 장비 개요	 3
2. 각부 명칭	 4
a. 광학센서 본체 b. 멀티채널 기본 모듈 c. 멀티채널 모듈부 케이스 d. 파이버 연장용 ST 어댑터 e. 통신 인터페이스 커넥터 f. 연장 파이버 g. 수광부	
3. 프로그램 작동	 7
a. 카메라 연결 b. 노출 설정 c. 측정 d. 연속 측정 e. 측정 결과 f. 데이터 저장 g. Raw File Checker	
4. Calibration	 11
a. User Calibrationb. RAW Calibration	
5. 주의 사항	 12

1. 장비 개요

멀티채널 측정시스템은 다수의 광파이버를 이용하여 여러 측정점의 광특성 데이터를 동시에 취득할 수 있습니다.

분광기에 기반을 둔 광학센서와 비접촉 렌즈 광학계를 이용하여 스펙트럼, 휘도, 색좌표 데이터의 재현성 있는 결과를 제공합니다.

2대의 카메라를 연결하여 총 60채널을 지원하고 각 카메라는 개별 또는 연동 측정이 가능합니다.

2. 각부 명칭

a. 광학센서 본체

b. 멀티채널 기본 모듈

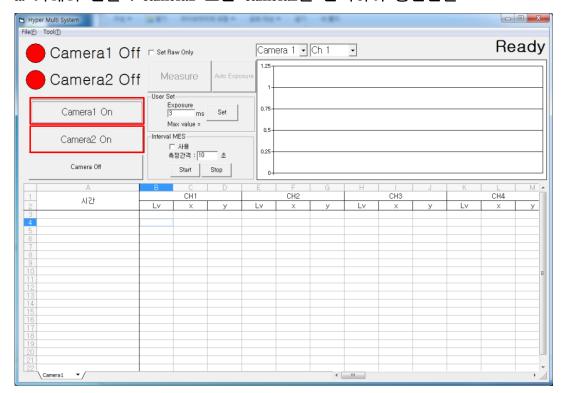


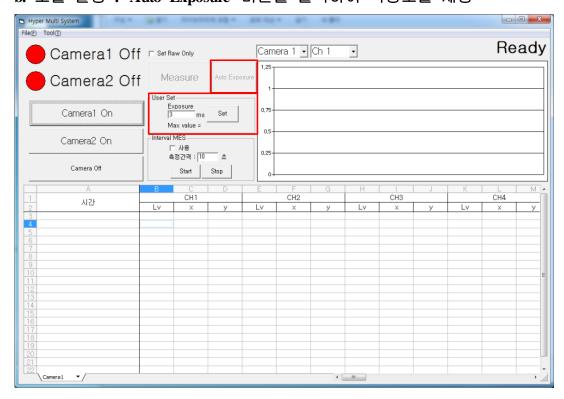
c. 멀티채널 모듈부 케이스

d. 파이버 연장용 ST 어댑터

e. 통신 인터페이스 커넥터 (IEEE 1394b type)

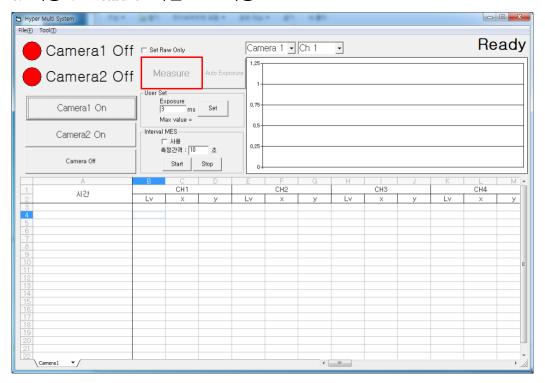
f. 연장 파이버 연결 (2m, 30채널)


g. 비접촉 광학 렌즈가 장착된 수광부

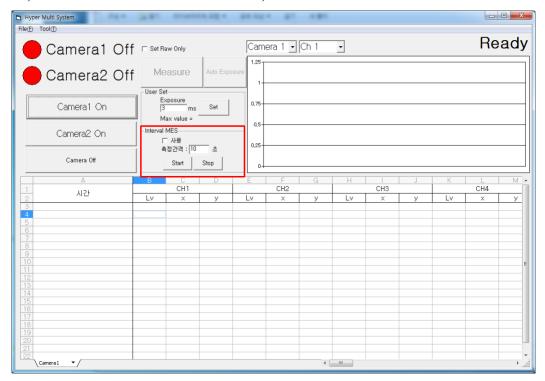


3. 프로그램 작동

a. 카메라 연결: camera1 또는 camera2를 선택하여 통신연결

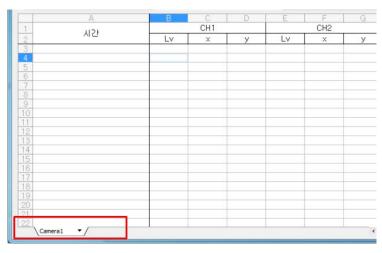


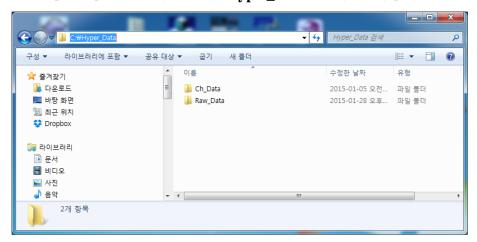
b. 노출 설정 : 'Auto Exposure' 버튼을 클릭하여 적정노출 세팅


c. 측정: 'Measure' 버튼으로 측정

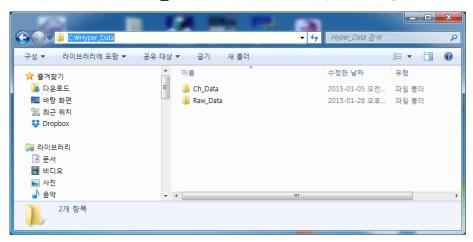
d. 연속 측정

Interval MES 메뉴에서 사용을 체크하고 측정간격을 초단위로 입력 후 'Start' 버튼으로 측정 진행


단, 연속 측정 모드에서는 camera1, 2가 순차적으로 동시 측정됨

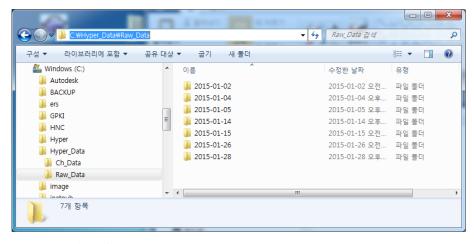

e. 측정 결과

하단의 데이터 시트에 채널별 휘도, 색좌표 표시 cameral, 2의 결과는 하단의 시트로 구분되어 있음

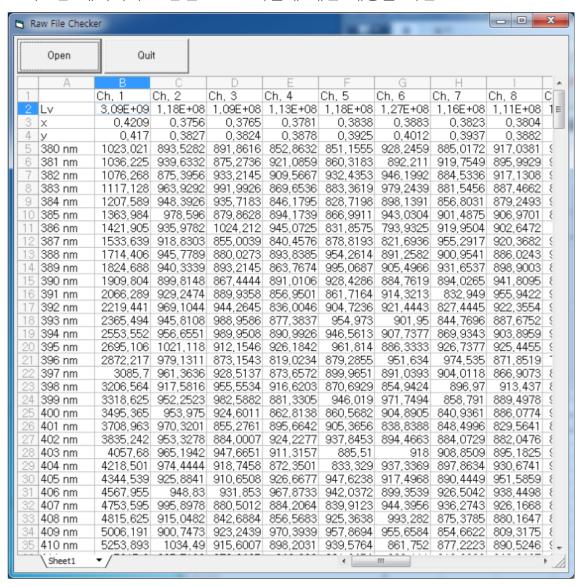


f. 데이터 저장

- 자동 저장 : C드라이브의 'Hyper_Data' 폴더에 측정결과가 자동으로 저장



- 채널 데이터 : 'Ch_Data' 폴더에 엑셀포맷으로 저장



- RAW 데이터 : 스펙트럼 데이터가 포함된 파일로 'Raw_Data' 폴더에 저장

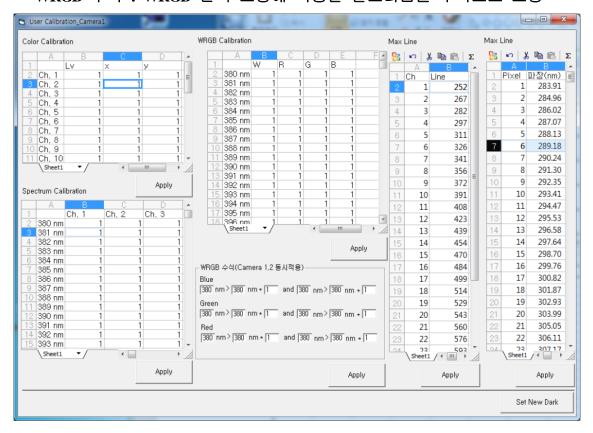
g. Raw File Checker

스펙트럼 데이터가 포함된 RAW 파일에 대한 내용을 확인

4. Calibration

a. User Calibration

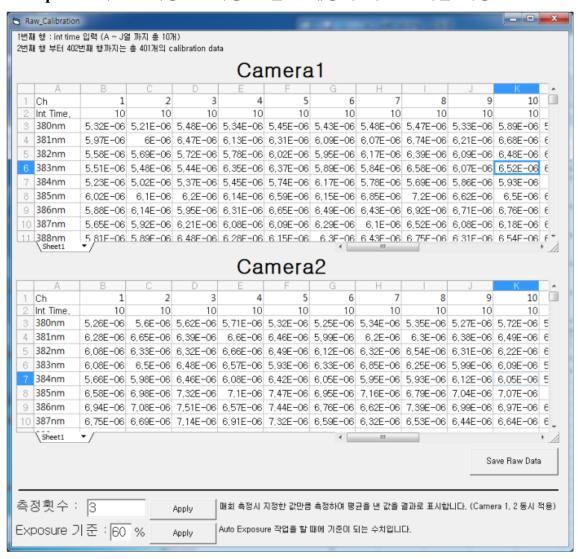
- cameral, 2 각각에 대해 사용자가 임의로 보정계수를 입력


- Color Calibration : 채널별 휘도, 색좌표 보정

- Spectrum Calibration : 채널별 분광데이터 보정

- WRGB Calibration : 단색 패턴에 대한 보정

- Max Line : 픽셀 및 파장 교정값으로써 출하시 기본값을 사용 권장


- WRGB 수식 : WRGB 단색 보정에 적용할 알고리즘을 수식으로 조정

b. Raw_Calibration

- Camera1, 2 각각에 대한 기본 분광교정데이터 입력값으로써 출하시 기본값을 사용 권장
- 측정횟수 : 입력한 숫자만큼 자동으로 평균 측정 후 결과를 산출
- Exposure 기준 : 측정 전 자동 노출값 세팅시 기준 범위를 지정

- 5. 주의 사항
- a. 교정데이터는 측정결과에 영향을 주기 때문에 변경 전 충분히 검토 필요
- b. 광파이버의 최소 곡률 반경은 100mm임