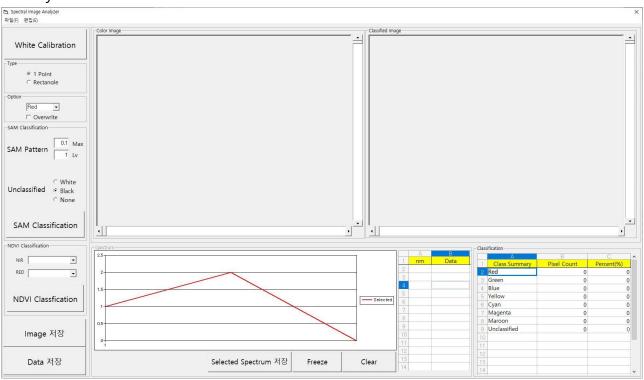
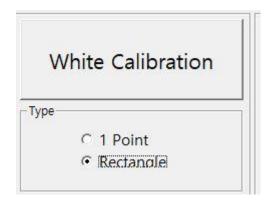
초분광 카메라 소프트웨어 설명서

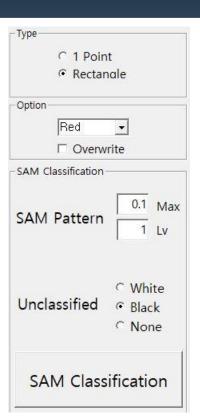
Spectral Image Analyzer v1.0


목차

- 1. 프로그램 실행
- 2. 화면 구성
- 3. 촬영 이미지 불러오기
- 4. White calibration Normalization
- 5. SAM(Spectral Angle Mapper) 분류
- 6. NDVI
- 7. 데이터 관리


1. 프로그램 실행

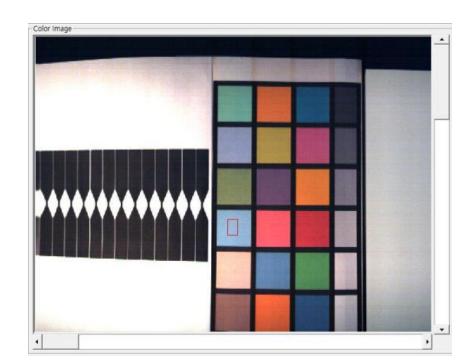
Spectral Image Analyzer.exe 실행


- Whit Calibration
 - 백색표준 반사판을 이용한 반사율 교정
 - 한 개의 픽셀 또는 사각형 영역 지정

SAM Classification

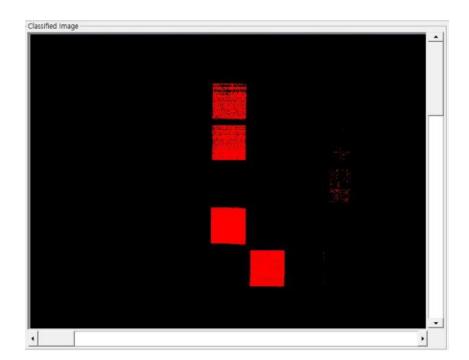
- Spectral Angle Mapper 알고리즘을 이용한 이미 지 분류
- 픽셀 기준 또는 영역 기준 관심영역(ROI) 설정
- 단일 분류 및 멀티 분류 지원
- 분류 레벨 조정
- 미분류 배경 처리 선택

- NDVI Classification
 - Normalized Difference
 Vegetation Index 알고리
 즘을 이용한 이미지 분류
 - 식생 지수 수식

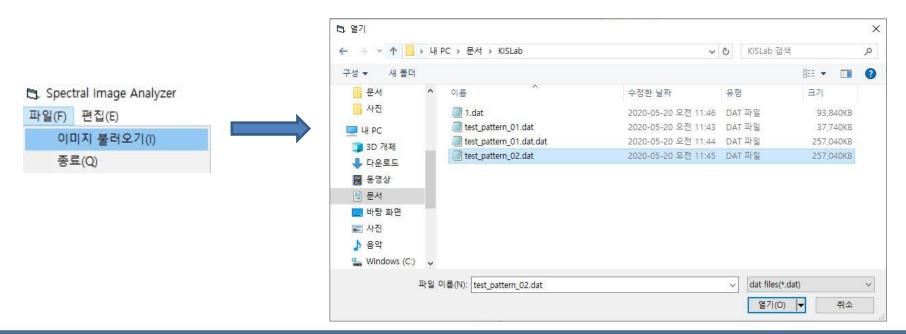

$$NDVI = \frac{NIR-RED}{NIR+RED}$$

사용자 지정에 의한 RED,NIR 파장으로 자동 계산

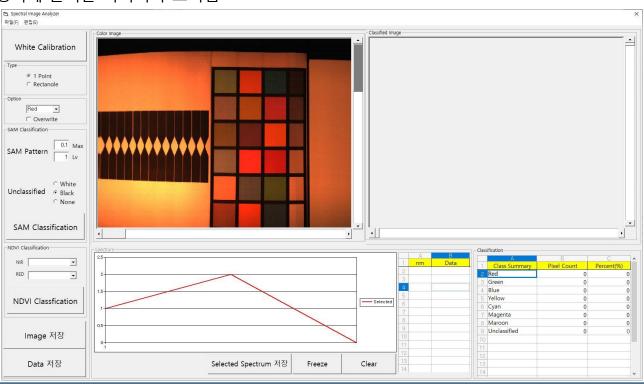
NIR	191:800,50nm <u>▼</u>
RED	123:651,20nm 💌
RED	123:651,20nm _

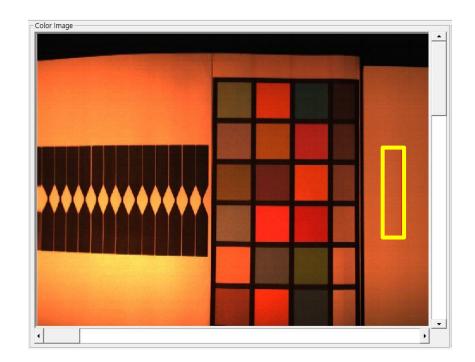


- Color Image
 - Raw 이미지 및 Normalized 이미지 표 시
 - 관심 영역(ROI) 지정

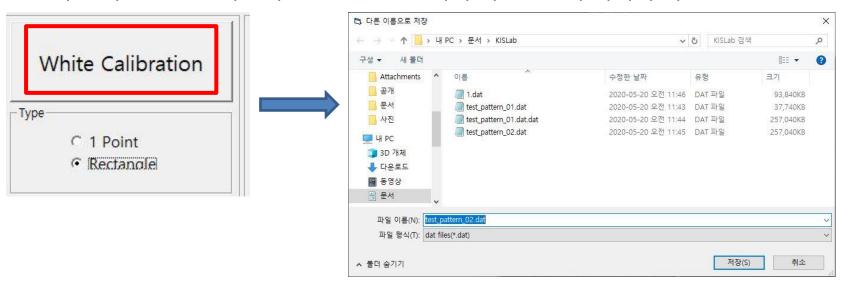

- Classified Image
 - SAM 분류 이미지 표시
 - NDVI 이미지 표시

3. 촬영 이미지 불러오기

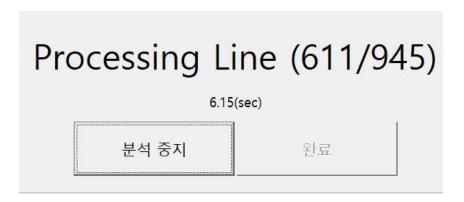

- 파일 메뉴에서 이미지 불러오기 클릭
- 측정 프로그램을 통해 저장된 *.dat 확장자 파일 선택하여 열기


3. 촬영 이미지 불러오기

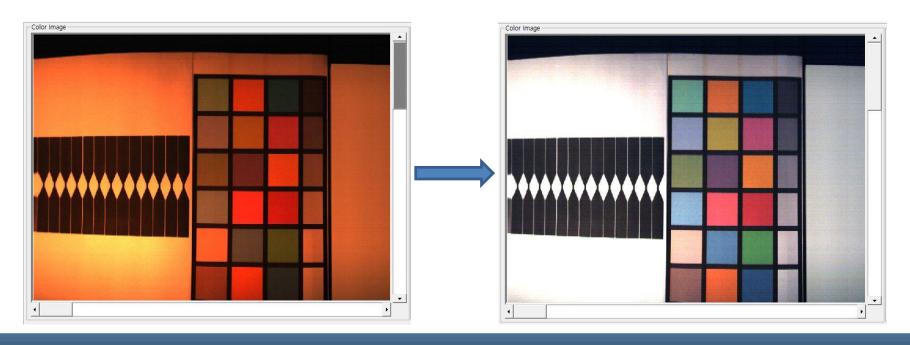
Color Image 영역에 불러온 이미지가 표시됨



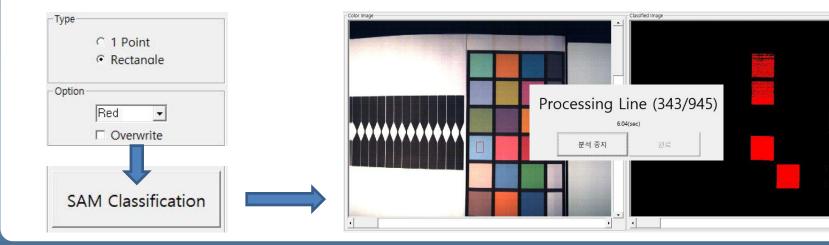
- 촬영된 영역 내에 있는 표 준 백색판 선택
- 픽셀(1 point) 또는 사각형 영역(rectangle) 선택 가능 (rectangle 권장)



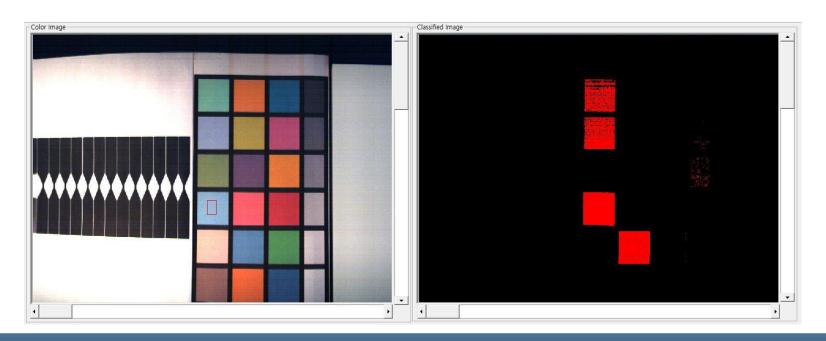
- White Calibration 버튼 클릭
- 데이터가 저장될 경로 지정
- 파일 이름은 원본 파일에 'reflectance' 첨자가 자동으로 부여되며 저장됨



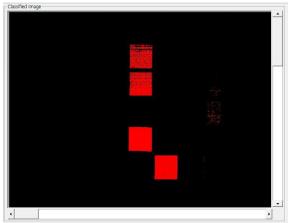
• 표준백색판 스펙트럼을 분석하여 자동으로 Normalization 진행

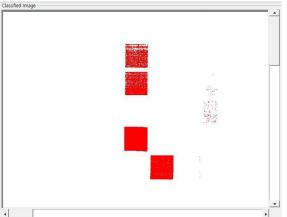


 '파일명_reflectance.dat' 포맷으로 저장된 교정된 파일을 이미지 불러오기를 통해 Color Image 창에 표시

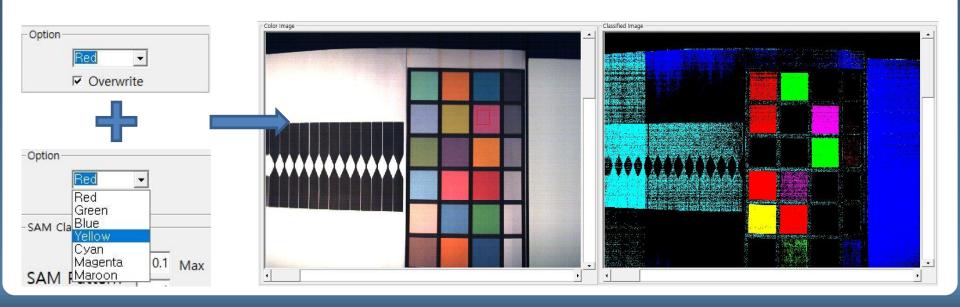


- Type 항목에서 1 point 또는 rectangle 형태의 영역 지정 방식 선택(rectangle 권장)
- Color Image 창에서 관심 영역(ROI)을 click(1 point) 또는 drag(rectangle)로 선택 후 SAM Classification 버튼 클릭
- 멀티 영역 분류시 Option 항목의 Overwrite를 체크하고 분류 색상을 지정 후 진행

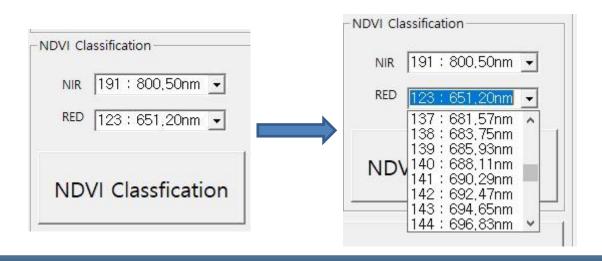

• 분석이 완료되면 Classified Image 창에 관심 영역과 동일한 스펙트럼 특성을 나타내는 영역들을 분류한 이미지가 표시됨



• 분류가 되지 않는 부분은 black, white, none 선택에 따라 자동으로 처리됨

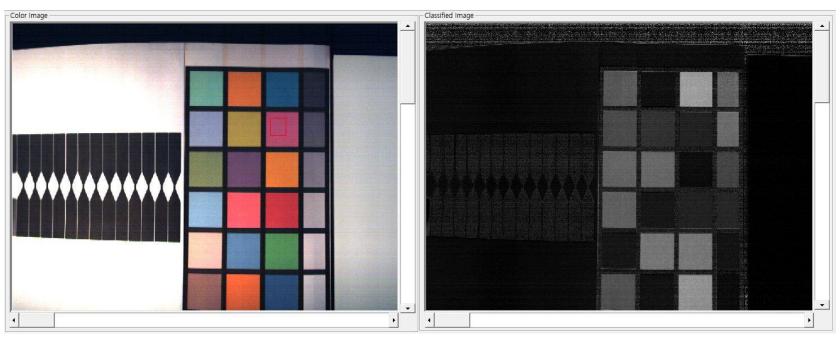


- 멀티 분류는 최대 7개의 서로 다른 영역 지정이 가능
- Overwrite 체크와 색상 선택을 통해 순차적으로 분류(색상별 분류를 반복)

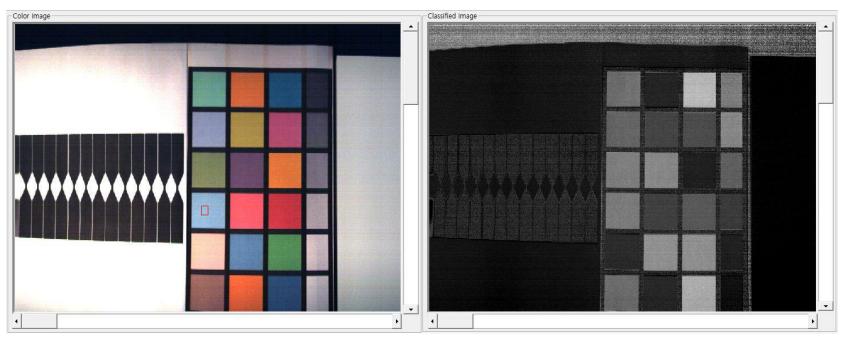


- SAM Pattern 값을 조정하여 분류 정확도를 조절
- Max 값은 SAM 알고리즘을 통해 계산된 cos α 값의 편차를 지정
 - Default 값은 0.1
 - 입력 가능 범위: 0.01 ~ 1.00
 - 입력 값이 클수록 정확도는 낮아지고 분류 속도는 빨라짐
- Lv 값은 Spectral angle을 계산하기 위한 분광 밴드 간격을 설정
 - Default 값은 1
 - 입력 가능 범위: 1 이상 자연수
 - 입력 값이 클수록 정확도는 낮아지고 분류 속도는 빨라짐

- 정규 식생 지수로 RED 영역의 흡수 파장과 근적외선 반사 파장 세기의 연산으로 산출
- 다양한 NDVI 결과를 위해 사용자가 직접 파장 선택 가능
- $NDVI = \frac{NIR RED}{NIR + RED}$

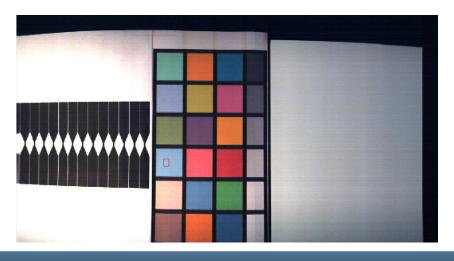


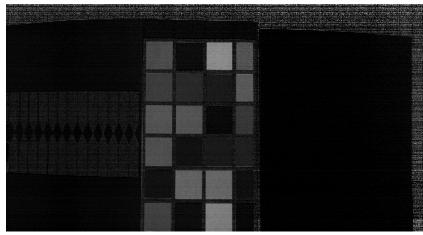
NDVI	Normalized Difference Vegetation Index	$NDVI = rac{NIR-RED}{NIR+RED}$	[-1] — [+1]	Structure	Rouse et al. (1974)	1974
NDVI (Aparicio)	Normalized Difference Vegetation Index	$NDVI_{Aparicio} = rac{R_{900} - R_{680}}{R_{900} + R_{680}}$	[-1] — [+1]	Structure	Aparicio et al. (2002)	2002
NDVI (Datt)	Normalized Difference Vegetation Index	$NDVI_{Datt} = rac{R_{800} - R_{680}}{R_{800} + R_{680}}$	[-1] — [+1]	Structure	Datt (1998)	1998
NDVI (Haboudane)	Normalized Difference Vegetation Index	$NDVI_{Haboudane} = rac{R_{800} - R_{670}}{R_{800} + R_{670}}$	[-1] — [+1]	Structure	Haboudane (2004)	2004
NDVI (Zarco- Tejada)	Normalized Difference Vegetation Index	$NDVI_{Zarco-Tejada} = rac{R_{774} - R_{677}}{R_{774} + R_{677}}$	[-1] — [+1]	Structure	Zarco-Tejada (1999)	1999



- NDVI Default
 - NIR 800nm, RED 650nm

- NDVI 사용자 입력 파장
 - NIR 800nm, RED 600nm





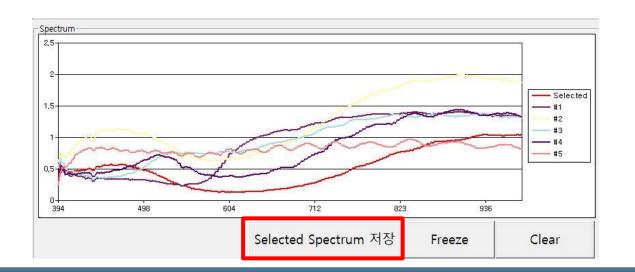
7. 데이터 관리

- 이미지 저장
- '파일명_color.jpg'와 '파일명_classified.jpg' 2개 이미지 파일 동시 저장

Image 저장

7. 데이터 관리

- 데이터 저장
- 데이터 분류 결과를 '파일명.xls' 포맷으로 저장


Data 저장

	A	В	C	^
1	Class Summary	Pixel Count	Percent(%)	
2	Red	13120	2.71	
3	Green	7803	1.61	
4	Blue	115707	23.91	
5	Yellow	3749	0.77	
6	Cyan	27311	5.64	
7	Magenta	4711	0.97	
8	Maroon	0	0	
9	Unclassified_Black	298815	61,76	
10				
11				
12				
13				
14				U

7. 데이터 관리

- 스펙트럼 저장
- 스펙트럼 데이터를 '파일명_spectrum.xls' 포맷으로 저장

	A	В
1	nm	Data
2	394,46	0,336991758
3	396,51	0,571151099
4	398,56	0,544942308
5	400,6	0,51878022
6	402,65	0,46643956
7	404.7	0,470865385
8	406,75	0,478645604
9	408,81	0,454027473
10	410,86	0,44642033
11	412,91	0,468791209
12	414,97	0,464508242
13	417,02	0,48353022
14	419,08	0,462304945