
 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 1 December 2023

GoldenEyeTM Hyperspectral Imaging Camera

SDK

User’s Guide

Version 1.0.2

Document No. 94-101301

BaySpec, Inc.
1101 McKay Drive, San Jose, CA 95131

Tel. (408) 512-5928 • Fax: (408) 512-5929

Web: www.bayspec.com

December 2023

© Copyright to BaySpec, Inc. 2023

Preliminary document subject to alterations without notice

http://www.bayspec.com/
http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 2 December 2023

Table of Contents:

1. Overview ... 3

2. System Requirements .. 3

2.1 Hardware .. 3

2.2 Software .. 4

2.3 Required files .. 4

3. Functions ... 4

3.1 MyCamera() – Connect and Identify Camera .. 4

3.2 setup_cam_acquisition() - Initialize Camera for Image Acquisition 5

3.3 acquire_cube() - Acquire and process images .. 6

4. Python sample program: “sdk_example.py” .. 6

5. Files in the SDK package ... 8

Appendix I: ENVI Header Information Example .. 9

Appendix II: Calibrated Spectral Intensities ..10

Appendix III: Run Python Code in LabView Environment11

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 3 December 2023

1. Overview

BaySpec GoldenEye Software Development Kit (SDK) supplies the interface for the software

developer to access the BaySpec GoldenEyeTM Visible-Near-Infrared (NIR) GoldenEye

hyperspectral imager. The SDK provides a set of functions that allow the user to configure and

control the camera, acquire live images, and acquire and process stacks of up to 141 wavelength

bands at full image sensor resolution. The callable Python functions in the SDK can be integrated

into Python or LabVIEW programs (see Appendix III) as needed. A sample code running in

Python is also included in this SDK. The library is compatible with Windows 10/11. The SDK is

currently available for both Python 3.7 (SDK v1.0.1) and Python 3.10 (SDK v1.0.2).

Figure 1: GoldenEyeTM hyperspectral imager with a standard

 f=8 mm (40° FOV) lens, in an ultra-compact package

2. System Requirements

2.1 Hardware
The minimum requirements for the computer are listed below:

OS: Microsoft Windows 10 / 11

CPU: Intel® Core™ i5 or above

RAM: 16 GB or higher (min 32 GB for high resolution option)

USB Port: USB 2.0 / 3.0

Display: 1280  1024 pixels or better

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 4 December 2023

2.2 Software
Python version 3.7 or Python 3.10 is required.

Python 3.7: Required packages

• Ximea_api

• Threading

• Serial

• Numpy

• Crypto.Cipher

• Crypto.random

• Struct

• Lmfit

• Scipy.interpolate

• Os

• Sys

• Configparser

Python 3.10: Required packages

• Ximea_api

• Threading

• Serial

• Numpy

• pycryptodome

• Struct

• Lmfit

• Scipy.interpolate

• Os

• Sys

• Configparser

Note: The SDK includes a virtual environment file with the minimum required packages. It

can be used with the conda package manager for the new environment creation. The command

line instruction is "conda env create -f sdk_env.yml".

2.3 Required files
Provided (and necessary) scripts

• setup_acquisition.py

• Ximea API scripts and DLLs

3. Functions

3.1 MyCamera() – Connect and Identify Camera

Usage: cam_id=MyCamera()

Description: Establish connection to the camera. If succeed, assign the camera identification to

the variable “cam_id”. If connection failed, the error code 56 “No Devices Found”

will be issued.

Parameters: None

Return value: camera identifier value if succeed, or “No Device Found” error if failed

Requirement: have imported MyCamera package (“from setup_acquisition import MyCamera”)

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 5 December 2023

3.2 setup_cam_acquisition() - Initialize Camera for Image Acquisition

Usage: setup_acquisition.setup_cam_acquisition(cam_id, exposure, gain,

high_resolution, acquisition length, wavelengths_in)

Description: Initialize the system

Parameters: cam_id: camera identifier

exposure: camera exposure time in µs (settable range: 7000-50,000)

gain: camera gain in dB (settable range: -3.5→+7.4)

high_resolution: a True/False Boolean indicating camera resolution mode. True:

camera runs in full resolution: 1280 × 1024; False: camera runs in ¼ resolution:

640 × 512. Running the camera in the lower resolution mode will significantly

increase the acquisition/processing speed.

Note: this parameter is only valid for newer version of GoldenEye with high

resolution cameras, will be ignored if an older version of GoldenEye (pixel

resolution: 648 × 488) is connected.

acquisition_length: number of frames to be acquired each time (frames are then

processed into a single hyperspectral cube). The settable range is 50-200. The

maximum value 200 (default) provides the highest spectral resolution for the cube,

while the minimum value 50 requires the shortest image acquisition time (comes

with lowest spectral resolution).

wavelengths_in (Optional): list of wavelengths of interest to be passed to the

camera. The wavelengths have to be within 400 to 1100 nm range. If they are

outside this range, the camera will default to 400-1000 nm interval with 5 nm steps.

List is a numpy array. An example is: “wavelengths_in= np.linspace

(400,1100,141)” Wavelength step interval is defined by the passed list. The

resulting wavelengths will be slightly shifted depending on the exact camera

calibration parameters. If no input is given for “wavelengths_in”, the program will

check for the Wavelengths.csv file to determine the interval. If the file is also

missing, the default will be again 400-1100 nm.

Return value: None.

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 6 December 2023

Requirements: (Optional) band definition file: “wavelengths.csv” in the App root folder, which

determines the bands/wavelengths for the cube. If this file is missing, the default is

141 bands in the range of 400-1100 nm with an even interval of 5nm between the

bands.

3.3 acquire_cube() - Acquire and process images

Usage: Cube_information, band_images, wavelengths = setup_acquisition.

acquire_cube (ext_trigger)

Description: Acquire images and obtain the hyperspectral cube data

Parameters: ext_trigger: a True/False Boolean. True if camera will be externally triggered. If

externally triggered, the camera will wait indefinitely for the external trigger to

start the acquisition and then processing.

Return value: Cube_information: all information needed about the hyperspectral cube. Used for

most ENVI environment hyperspectral image loading. See Appendix I for an

example. This information enables most ENVI-compatible software to

automatically label and organize the hyperspectral data cube.

Band_images: hyperspectral cube of the size (#bands, samples, lines) where

[#bands] is the number of bands/wavelengths (up to 141). [Samples × lines] is the

image resolution of the band images. The pixel values of these images represent

relative spectral intensity (raw sensor measurements). They are not radiometrically

calibrated. To obtain radiometrically calibrated results, see Appendix II.

wavelengths: a list of wavelengths associated with the hyperspectral images.

Although these are already contained within the Cube_information, they are part

of output for convenience and easy plotting.

Requirement: setup_acquire.py; Ximea API scripts and DLLs; wavelengths.csv.

4. Python sample program: “sdk_example.py”

A Python sample program is included in this SDK for demonstration of the usages of the

functions, and to streamline user development. This sample program also includes a short

example code section showing live image preview for alignment and focusing (done by calling

the XIMEA API). Below screenshots show how to run this sample program.

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 7 December 2023

Note: The SDK and its accompanying sample program are dependent on specific Python

versions. The sample program included in SDK v1.0.1 is designed to run under Python 3.7,

whereas the one packaged with SDK v1.0.2 should be executed using Python 3.10.

Figure 2: running the sample program

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 8 December 2023

5. Files in the SDK package

Below is a list files included in the SDK package:

Figure 3: List of included files for the SDK

Note: Wavelengths.csv contains a list of the wavelengths of interest and can be varied to

focus on specific wavelengths and/or expanded to see a broader range of wavelengths. By default,

the imager is setup to measure over the full spectral range of 400 - 1100nm. It will generate 141

Hyperspectral band images in a 5nm step. If desired, users can define their own wavelength bands

in any integer steps. For example, if a user only wants to see some specific wavelengths, or wants

smaller band steps in shorter wavelength and larger band steps in longer wavelengths (to match

the wavelength resolution), this can be done by modifying the file “wavelengths.csv” to specify

the desired wavelengths and step sizes (must be within the range of 400nm to 1100nm, be

listed monotonously rising, the minimum step is 1nm, must be saved in “CSV (Comma

delimited) (.csv)” format). The software will read this file and generate Hyperspectral band

images accordingly.

Alternatively, the user can pass the wavelengths as a list within the python function, instead of

having the Wavelengths.csv file.

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 9 December 2023

Appendix I: ENVI Header Information Example

ENVI
bands = 141
samples = 640
lines = 512
interleave = bsq
data type = 12
byte order = 0
wavelength units = nm
wavelength = { 400.93, 405.96, 410.98, 416.00, 421.03, 426.05, 431.07, 436.08, 441.10,
446.12, 451.13, 456.15, 461.16, 466.17, 471.18, 476.19, 481.20, 486.20, 491.21, 496.21,
501.21, 506.21, 511.22, 516.21, 521.21, 526.21, 531.20, 536.20, 541.19, 546.18, 551.17,
556.16, 561.15, 566.14, 571.12, 576.11, 581.09, 586.07, 591.05, 596.03, 601.01, 605.99,
610.97, 615.94, 620.91, 625.89, 630.86, 635.83, 640.79, 645.76, 650.73, 655.69, 660.65,
665.62, 670.58, 675.54, 680.50, 685.45, 690.41, 695.36, 700.32, 705.27, 710.22, 715.17,
720.12, 725.06, 730.01, 734.95, 739.90, 744.84, 749.78, 754.72, 759.65, 764.59, 769.53,
774.46, 779.39, 784.32, 789.25, 794.18, 799.11, 804.04, 808.96, 813.88, 818.81, 823.73,
828.65, 833.56, 838.48, 843.40, 848.31, 853.22, 858.14, 863.05, 867.95, 872.86, 877.77,
882.67, 887.58, 892.48, 897.38, 902.28, 907.18, 912.07, 916.97, 921.86, 926.76, 931.65,
936.54, 941.43, 946.31, 951.20, 956.08, 960.97, 965.85, 970.73, 975.61, 980.49, 985.36,
990.24, 995.11, 999.98, 1004.86, 1009.72, 1014.59, 1019.46, 1024.32, 1029.19, 1034.05,
1038.91, 1043.77, 1048.63, 1053.49, 1058.34, 1063.20, 1068.05, 1072.90, 1077.75, 1082.60,
1087.45, 1092.29}
fwhm =
{6.84,7.14,7.44,7.74,8.05,8.36,8.67,8.98,9.30,9.62,9.95,10.28,10.61,10.94,11.28,11.62,11.97,12.3
1,12.66,13.02,13.37,13.73,14.10,14.46,14.83,15.20,15.58,15.96,16.34,16.72,17.11,17.50,17.90,18
.29,18.69,19.10,19.50,19.91,20.32,20.74,21.16,21.58,22.00,22.43,22.86,23.30,23.74,24.18,24.62,
25.06,25.51,25.97,26.42,26.88,27.34,27.81,28.27,28.75,29.22,29.70,30.18,30.66,31.14,31.63,32.1
3,32.62,33.12,33.62,34.12,34.63,35.14,35.65,36.17,36.69,37.21,37.74,38.26,38.79,39.33,39.86,40
.40,40.95,41.49,42.04,42.59,43.15,43.71,44.27,44.83,45.40,45.97,46.54,47.12,47.69,48.28,48.86,
49.45,50.04,50.63,51.23,51.82,52.43,53.03,53.64,54.25,54.86,55.48,56.10,56.72,57.35,57.97,58.6
1,59.24,59.88,60.52,61.16,61.80,62.45,63.10,63.76,64.41,65.07,65.74,66.40,67.07,67.74,68.42,69
.09,69.77,70.45,71.14,71.83,72.52,73.21,73.91,74.61,75.31,76.02,76.73,77.44,78.15}

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 10 December 2023

Appendix II: Calibrated Spectral Intensities

A standard practice for many hyperspectral imaging applications, and in particular for wavelength

based image classification, is to measure reflectance. Since the reflectance is dependent upon the

knowledge of the ambient/impinging light, it has to be calibrated every time the light/environment

changes. In many applications this is done by taking a white reference image, with an object

which has a constant reflectance ~1 across the spectrum, and then factor the raw band images to it

to generate the reflectance band images.

Standard steps which can be taken to obtain reflectance are:

1) Acquire a hyperspectral image of a white reference, with uniform illumination, using:

cube_info, band_images, wl = setup_acquisition.acquire_cube (ext_trigger),

2) Save the “band_images” to a variable: “white_reference” for example,

3) Acquire successive hyperspectral images with the same camera settings:

cube_info, band_images, wl = setup_acquisition. acquire_cube (ext_trigger),

4) For every new acquisition of “band_images”, divide the result by the “white_reference”

cube to obtain the absolute reflectance,

5) Take a new “white reference” image if the light conditions change.

Note: During the division process care must be taken to avoid large, physically

improbable reflectance values; so, it is advisable to check for any zero-data in the white_reference

image and to ensure that the acquired white_reference intensities are ~5-10 times above the noise

floor threshold.

http://www.bayspec.com/

 GoldenEye SDK User’s Guide V 1.0.2

BaySpec, Inc. www.bayspec.com Document No. 94-101301 11 December 2023

Appendix III: Run Python Code in LabView Environment

It is possible to run Python code in LabVIEW environment. There are two ways to do this:

• Using the Python Node: The Python Node is a LabVIEW VI that allows you to call

Python code from within a LabVIEW program. The Python Node can be used to execute

Python scripts, pass data to and from Python, and access Python libraries.

• Using the System Exec.vi: The System Exec.vi is a LabVIEW VI that allows you to

execute a system-level command line. This VI can be used to launch a Python interpreter

and execute a Python script from the command line.

Here are the steps on how to run Python code in LabVIEW environment using the Python Node:

1. Install Python on your computer.

2. Install the Python Node in LabVIEW.

3. Create a new LabVIEW project.

4. Add the Python Node to your project.

5. Configure the Python Node with the path to your Python interpreter and the name of your

Python script.

6. Run your LabVIEW program.

Here are the steps on how to run Python code in LabVIEW environment using the System Exec.vi:

1. Install Python on your computer.

2. Create a new LabVIEW project.

3. Add the System Exec.vi to your project.

4. Configure the System Exec.vi with the path to your Python interpreter and the command

line to execute your Python script.

5. Run your LabVIEW program.

For further instructions please consult NI knowledge website:

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x4PSCAY&l=en-US

You may also be able to find many coding tutorials and examples in YouTube channels.

http://www.bayspec.com/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x4PSCAY&l=en-US

